Home
Class 12
MATHS
Let a1, a2, a3...an be in AP such that s...

Let `a_1, a_2, a_3...a_n` be in AP such that `sum_(k=0)^12(a_(4k+1))=416` and `a_9+a_43=66` If `a_1^2+a_2^2+...+a_17^2=140m` then m is equal to (1) 66 (2) 68 (3) 34 (4) 33

Promotional Banner

Similar Questions

Explore conceptually related problems

Let a_(1),a_(2),a_(3)...a_(49) be in AP such that sum_(k=0)^(12)(a_(4)k+1)=416 and a_(9)+a_(43)=66 If a_(1)^(2)+a_(2)^(2)+...+a_(17)^(2)=140m then m is equal to (1)66(2)68(3) 34(4)33

Let a_1,a_2,a_3…., a_49 be in A.P . Such that Sigma_(k=0)^(12) a_(4k+1)=416 and a_9+a_(43)=66 .If a_1^2+a_2^2 +…+ a_(17) = 140 m then m is equal to

Let a_1,a_2,a_3…., a_49 be in A.P . Such that Sigma_(k=0)^(12) a_(4k+1)=416 and a_9+a_(43)=66 .If a_1^2+a_2^2 +…+ a_(17) = 140 m then m is equal to

Let a_(1), a_(2), a_(3),...,a_(49) be in AP such that sum_(k=0)^(12) a_(4k +1) = 416 and a_(9) + a_(43) = 66 . If a_(1)^(2) + a_(2)^(2) + ...+ a_(17)^(2) = 140m , then m is equal to

Suppose a_(1), a_(2), a_(3),…., a_(49) are in A.P and underset(k=0)overset(12)Sigma a_(4k+1)= 416 and a_(9) + a_(43)= 66 . If a_(1)^(2) + a_(2)^(2)+ ….+ a_(17)^(2)= 140m then m= ……..

Let a_1,a_2,a_3 …. a_n be in A.P. If 1/(a_1a_n)+1/(a_2a_(n-1)) +… + 1/(a_n a_1) = k/(a_1 + a_n) (1/a_1 + 1/a_2 + …. 1/a_n) , then k is equal to :

Let a_1,a_2,a_3 …. a_n be in A.P. If 1/(a_1a_n)+1/(a_2a_(n-1)) +… + 1/(a_n a_1) = k/(a_1 + a_n) (1/a_1 + 1/a_2 + …. 1/a_n) , then k is equal to :

a_1, a_2, a_3 …..a_9 are in GP where a_1 lt 0, a_1 + a_2 = 4, a_3 + a_4 = 16 , if sum_(i=1)^9 a_i = 4 lambda then lambda is equal to