Home
Class 12
MATHS
If y=ax^(n+1)+bx^(-n) then show that x^(...

If `y=ax^(n+1)+bx^(-n)` then show that `x^(2)y''=n(n+1)y`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=ax^(n+1)+bx^(-n), then x^(2)(d^(2)y)/(dx^(2))=n(n-1)y(b)n(n+1)y(c)ny(d)n^(2)y

If y=px^(n)+qx^(-n) , show that x^(2)y_(2)+xy_(1)-n^(2)y=0 .

If y=e^(a sin^(-1)x) then show that (1-x^(2))y_(n+2)-(2n+1)xy_(n+1)-(n^(2)+a^(2))y_(n)=0

If y=a x^(n+1)+b x^(-n) , then x^2(d^2y)/(dx^2)= n(n-1)y (b) n(n+1)y (c) n y (d) n^2y

If y=ax^(n+1)+bx^(-n), then x^(2)(d^(2)y)/(dx^(2)) is equal to n(n-1)y(b)n(n+1)yny(d)n^(2)y

If y = ax^(n+1) + bx^(-1) , then x^(2) (d^(2)y)/(dx^(2)) =

If 2x=y^(1/m)+y^(-1/m) , then prove that (x^2-1)y_(n+2)+(2n+1)xy_(n+1)+(n^2-m^2)y_n=0 .

If y=1+x+(x^(2))/(2!)+(x^(3))/(3!)+....+(x^(n))/(n!) , then show that (dy)/(dx)+(x^(n))/(n!)=y