Home
Class 14
MATHS
If (x^(24) + 1)/x^(12) = 7 then the valu...

If `(x^(24) + 1)/x^(12) = 7` then the value of `(x^(72) + 1)/x^(36)` is

A

433

B

322

C

345

D

432

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ \frac{x^{24} + 1}{x^{12}} = 7 \] ### Step 1: Rewrite the equation We can rewrite the equation as follows: \[ \frac{x^{24}}{x^{12}} + \frac{1}{x^{12}} = 7 \] This simplifies to: \[ x^{12} + \frac{1}{x^{12}} = 7 \] ### Step 2: Let \( y = x^{12} \) Now, let’s set \( y = x^{12} \). The equation becomes: \[ y + \frac{1}{y} = 7 \] ### Step 3: Multiply both sides by \( y \) To eliminate the fraction, multiply both sides by \( y \): \[ y^2 + 1 = 7y \] ### Step 4: Rearrange the equation Rearranging the equation gives us a standard quadratic form: \[ y^2 - 7y + 1 = 0 \] ### Step 5: Solve the quadratic equation We can use the quadratic formula \( y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = 1 \), \( b = -7 \), and \( c = 1 \). Calculating the discriminant: \[ b^2 - 4ac = (-7)^2 - 4 \cdot 1 \cdot 1 = 49 - 4 = 45 \] Now substituting into the quadratic formula: \[ y = \frac{7 \pm \sqrt{45}}{2} \] Since \( \sqrt{45} = 3\sqrt{5} \), we have: \[ y = \frac{7 \pm 3\sqrt{5}}{2} \] ### Step 6: Calculate \( x^{36} + \frac{1}{x^{36}} \) Next, we need to find \( \frac{x^{72} + 1}{x^{36}} \). First, we find \( x^{36} + \frac{1}{x^{36}} \). Using the identity: \[ \left( y + \frac{1}{y} \right)^2 = y^2 + 2 + \frac{1}{y^2} \] We can find \( x^{24} + \frac{1}{x^{24}} \): \[ \left( 7 \right)^2 = y^2 + 2 + \frac{1}{y^2} \] This gives: \[ 49 = y^2 + 2 + \frac{1}{y^2} \implies y^2 + \frac{1}{y^2} = 49 - 2 = 47 \] Now, we can find \( x^{36} + \frac{1}{x^{36}} \): Using the identity again: \[ \left( y^2 + \frac{1}{y^2} \right) \left( y + \frac{1}{y} \right) = y^3 + y + \frac{1}{y} + \frac{1}{y^3} \] Thus: \[ x^{36} + \frac{1}{x^{36}} = 47 \cdot 7 - 7 = 329 - 7 = 322 \] ### Step 7: Find \( \frac{x^{72} + 1}{x^{36}} \) Now we can calculate: \[ \frac{x^{72} + 1}{x^{36}} = x^{36} + \frac{1}{x^{36}} = 322 \] ### Final Answer Thus, the value of \( \frac{x^{72} + 1}{x^{36}} \) is: \[ \boxed{322} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(2) + ((1)/(x^(2))) =1 , then what is the value of x^(48) + x^(42) + x^(36) + x^(30) + x^(24) + x^(18) + x^(12) + x^(6) + 1 ?

If 3x - (1)/(2x) = 3 , then find the value of (36x^(4) + 1)/(4x^(2)) .