Home
Class 14
MATHS
If theta be acute angle and tan(4theta -...

If `theta` be acute angle and `tan(4theta - 50^(@) = cot(50^(@) - theta)`, then the value of `theta` in degrees

A

20

B

50

C

40

D

30

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan(4\theta - 50^\circ) = \cot(50^\circ - \theta) \), we can follow these steps: ### Step 1: Use the cotangent identity Recall that \( \cot(x) = \tan(90^\circ - x) \). Therefore, we can rewrite the equation as: \[ \tan(4\theta - 50^\circ) = \tan(90^\circ - (50^\circ - \theta)) \] This simplifies to: \[ \tan(4\theta - 50^\circ) = \tan(40^\circ + \theta) \] ### Step 2: Set the angles equal Since the tangent function is periodic, we can set the angles equal to each other: \[ 4\theta - 50^\circ = 40^\circ + \theta + n \cdot 180^\circ \quad (n \in \mathbb{Z}) \] For acute angles, we will consider \( n = 0 \): \[ 4\theta - 50^\circ = 40^\circ + \theta \] ### Step 3: Solve for \( \theta \) Rearranging the equation gives: \[ 4\theta - \theta = 40^\circ + 50^\circ \] \[ 3\theta = 90^\circ \] \[ \theta = \frac{90^\circ}{3} = 30^\circ \] ### Step 4: Conclusion Thus, the value of \( \theta \) is: \[ \theta = 30^\circ \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If theta is an acute angle and tan^(2)theta+(1)/(tan^(2)theta)=2 , then the value of theta is :

If tan theta=cot2 theta then the value of theta is

If theta is a positive acute angle and tan theta + cot theta = 2 , then the value of sec theta is

If theta is a positive acute angle and 3(sec^(2)theta+tan^(2)theta)=5 , then the value of cos2theta is

If theta is an acute angle and tan theta + cot theta=2 , then the value of tan^(5)theta + cot^(10) theta is:

If 0 lt theta lt90^@, and sin (2theta + 50^@) = cos (4 theta + 16^@) , then what s the value of theta (in degrees) ?

If tan 4theta = cot(40^@ – 2theta) , then theta is equal to: