Home
Class 14
MATHS
If 5 sin theta= 3, the numerical value o...

If `5 sin theta= 3`, the numerical value of `(sec theta - tan theta)/(sec theta + tan theta)` is

A

`1/2`

B

`1/5`

C

`1/3`

D

`1/4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \((\sec \theta - \tan \theta) / (\sec \theta + \tan \theta)\) given that \(5 \sin \theta = 3\). ### Step-by-Step Solution: 1. **Find \(\sin \theta\)**: \[ 5 \sin \theta = 3 \implies \sin \theta = \frac{3}{5} \] **Hint**: Remember that \(\sin \theta\) is the ratio of the opposite side to the hypotenuse in a right triangle. 2. **Use the Pythagorean identity to find \(\cos \theta\)**: \[ \sin^2 \theta + \cos^2 \theta = 1 \] \[ \left(\frac{3}{5}\right)^2 + \cos^2 \theta = 1 \implies \frac{9}{25} + \cos^2 \theta = 1 \] \[ \cos^2 \theta = 1 - \frac{9}{25} = \frac{16}{25} \implies \cos \theta = \frac{4}{5} \] **Hint**: The Pythagorean identity is crucial for finding \(\cos \theta\) when you know \(\sin \theta\). 3. **Find \(\sec \theta\) and \(\tan \theta\)**: \[ \sec \theta = \frac{1}{\cos \theta} = \frac{1}{\frac{4}{5}} = \frac{5}{4} \] \[ \tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{\frac{3}{5}}{\frac{4}{5}} = \frac{3}{4} \] **Hint**: Remember that \(\sec \theta\) is the reciprocal of \(\cos \theta\) and \(\tan \theta\) is the ratio of \(\sin \theta\) to \(\cos \theta\). 4. **Substitute \(\sec \theta\) and \(\tan \theta\) into the expression**: \[ \frac{\sec \theta - \tan \theta}{\sec \theta + \tan \theta} = \frac{\frac{5}{4} - \frac{3}{4}}{\frac{5}{4} + \frac{3}{4}} = \frac{\frac{2}{4}}{\frac{8}{4}} = \frac{2}{8} = \frac{1}{4} \] **Hint**: When combining fractions, ensure you have a common denominator to simplify correctly. 5. **Final Answer**: The numerical value of \(\frac{\sec \theta - \tan \theta}{\sec \theta + \tan \theta}\) is \(\frac{1}{4}\). ### Summary: The answer to the problem is \(\frac{1}{4}\).
Promotional Banner

Similar Questions

Explore conceptually related problems

(1+sec theta-tan theta)/(1+sec theta+tan theta)=

The value of log[(sec theta+tan theta)(sec theta-tan theta)] is ________

Value of sec theta(1-sin theta)(sin theta+tan theta) is

Value of sec theta(1-sin theta)(sin theta+tan theta) is

Value of sec theta(1-sin theta)(sin theta+tan theta) is

Prove that (1)/(sec theta - tan theta) = sec theta + tan theta

Prove that: 1/(sec theta - tan theta) = sec theta + tan theta .

If sec theta + tan theta = 4 , then sec theta- tan theta =?

If sec theta+tan theta=2 , then sec theta-tan theta = ?