Home
Class 14
MATHS
If a^(2) + 13 b^(2) + c^(2) - 4 ab - 6 ...

If ` a^(2) + 13 b^(2) + c^(2) - 4 ab - 6 b c = 0 ` then a : b : c is

A

`1:2:3`

B

`2:3:1`

C

`2:1:3`

D

`1:3:2`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If a^(2) +b^(2) +c^(2) = ab + bc + ca then (c )/(a+b) + (b)/(a +c)+ (c )/(a+b) = ?

If a^(2)+b^(2)+c^(2)-2a-4b6c= -14 then a+b+c =

If a^(2) +b^(2) +c^(2) = ab + bc + ca then ((a+b)/(c ) + (b+c)/(a) + (c+a)/(b)) ((c )/(a+b) + (b)/(a+c) + (c )/(a+b)) =?

If a^(2) +b^(2) +c^(2) = ab + bc + ca then (a+b)/(c ) + (b+c)/(a) + (c+a)/(b) =?

If quadratic equation ax^(2) + bx + ab + bc + ca - a^(2) - b^(2) - c^(2) = 0 where a, b, c distinct reals, has imaginary roots than (A) a+b+ab+bc+calta^(2)+b^(2)+c^(2) (B) a-b+ab+bc+cagta^(2)+b^(2)+c^(2) (C) 4a+2b+ab+bc+calta^(2)+b^(2)+c^(2) (D) 2(a+-3b)-9{(a-b)^(2)+(b-c)^(2)+(c-a)^(2)}lt0

If a^(2)+b^(2)+c^(2)-ab-bc-ca=0, then a+b=c( b) b+c=ac+a=b(d)a=b=c

If a + b + c = 13, a^2 + b^2 + c^2 = 69, " then find " ab + bc + ca .

If a^(2) + b^(2) = c^(2) then find (a^(6) + b^(6)- c^(6))/(a^(2) b^(2) c^(2))= ?