Home
Class 14
MATHS
If tan 3 theta. tan 7 theta. = 1, then t...

If `tan 3 theta. tan 7 theta. = 1`, then the value of `tan (theta + 36^(@))` is :

A

`1/sqrt(3)`

B

0

C

1

D

`sqrt(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \tan(\theta + 36^\circ) \) given that \( \tan(3\theta) \cdot \tan(7\theta) = 1 \). ### Step-by-Step Solution: 1. **Understanding the Equation**: We start with the equation: \[ \tan(3\theta) \cdot \tan(7\theta) = 1 \] This implies: \[ \tan(7\theta) = \frac{1}{\tan(3\theta)} = \cot(3\theta) \] 2. **Using the Cotangent Identity**: From the identity \( \cot(x) = \tan(90^\circ - x) \), we can rewrite \( \tan(7\theta) \): \[ \tan(7\theta) = \tan(90^\circ - 3\theta) \] 3. **Setting Up the Angle Equation**: Since \( \tan(7\theta) = \tan(90^\circ - 3\theta) \), we can equate the angles: \[ 7\theta = 90^\circ - 3\theta + n \cdot 180^\circ \quad \text{(for some integer } n\text{)} \] Simplifying gives: \[ 10\theta = 90^\circ + n \cdot 180^\circ \] Thus: \[ \theta = 9^\circ + n \cdot 18^\circ \] 4. **Finding \( \tan(\theta + 36^\circ) \)**: We need to find \( \tan(\theta + 36^\circ) \). Substituting \( \theta = 9^\circ \): \[ \tan(9^\circ + 36^\circ) = \tan(45^\circ) \] 5. **Calculating the Final Value**: We know that: \[ \tan(45^\circ) = 1 \] ### Conclusion: Thus, the value of \( \tan(\theta + 36^\circ) \) is: \[ \boxed{1} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If tan 7 theta tan 2 theta = 1 , then the value of tan 3 theta is

If tan 2 theta.tan 4 theta =1 , then the value of 3 theta is

If tan3theta.tan7theta=1 , then the value of tan(theta+36^(@)) is :

If tan2theta.tan4theta=1 , then the value of tan3theta is

If "tan" 2 theta "tan" theta =1, "then" theta =

If tan 2 theta cdot tan theta = 1 , then general value of theta is

If tan2 theta*tan theta=1, then theta=