Home
Class 11
MATHS
If (3x)^(log3)=(5y)^(log5) and 5^(log x)...

If `(3x)^(log3)=(5y)^(log5)` and `5^(log x)=3^(log y)` (all the log used have same base) then `x` & `y` are respectively:

Promotional Banner

Similar Questions

Explore conceptually related problems

If (log_(5)x)(log_(x)3x)(log_(3x)y)=log_(x)x^(3) then y equals

Solve the equations for x and y:(3x)^(log3)=(4y)^(log 4), 4 ^(log x) = 3 ^(log y) .

Solve the equations for x and y:(3x)^(log3)=(4y)^(log 4), 4 ^(log x) = 3 ^(log y) .

Solve the equations for x and y:(3x)^(log3)=(4y)^(log 4), 4 ^(log x) = 3 ^(log y) .

Solve the equations for x and y:(3x)^(log3)=(4y)^(log 4), 4 ^(log x) = 3 ^(log y) .

Solve the equations for x and y:(3x)^(log3)=(4y)^(log 4), 4 ^(log x) = 3 ^(log y) .

If log_(3)x + log_(3)y =2 + log_(3)2 and log_(3)(x+y) =2 , then