Home
Class 12
MATHS
If ((243)^(n/5) 3^(2n+1))/(9^n 3^(n-1))...

If `((243)^(n/5) 3^(2n+1))/(9^n 3^(n-1)) = x` , then the value of x is

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of ((243)^(n/5). 3^(2n+1))/(9^(n).3^(n-1)) is:

If I_(n)=int_(0)^(1)(1+x+x^(2)+....+x^(n-1))(1+3x+5x^(2)+....+(2n-3)x^(n-2)+(2n-1)x^(n-1))dx,n in N, then the value of sqrt(I_(9)) is

If I_(n)=int_(0)^(1)(1+x+x^(2)+....+x^(n-1))(1+3x+5x^(2)+....+(2n-3)x^(n-2)+(2n-1)x^(n-1))dx,n in N, then the value of sqrt(I_(9)) is

If the middle term in the expansion of (1 + x)^(2n) is (1.3.5…(2n - 1))/(n!) k^(n).x^(n) , the value of k is

If I_(n)=int_(0)^(1)(1+x+x^(2)+....+x^(n-1))(1+3x+5x^(2)+....+(2n-3)x^(n-2)+(2n-1)x^(n-1))dx,n in N, then the value of sqrt(I_(9)) is (a) 3 (b) 6 (c) 9 (d) 12

Fnd the value: ((243)^((n)/(5))3^(2n+1))/(9^(n)*3^(n-1))