Home
Class 12
MATHS
lim(n rarr oo)(1+2^(4)+3^(4)+.....+n^(4)...

lim_(n rarr oo)(1+2^(4)+3^(4)+.....+n^(4))/(n^(5))-lim_(n rarr oo)(1+2^(3)+....n^(3))/(n^(5))" is equal to "

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of [lim_(n to oo)(1+2^(4)+3^(4)+...+n^(4))/(n^(5))-lim_(n to oo)(1+2^(3)+3^(3)+...+n^(3))/(n^(5))] is equal to -

The value of lim_(n rarr oo) (1 + 2^(4) + 3^(4) +…...+n^(4))/(n^(5)) - lim_(n rarr oo) (1 + 2^(3) + 3^(3) +…...+n^(3))/(n^(5)) is :

lim_(n rarr oo) (1+2+3+…...+n)/(n^(2)), n in N is equal to :

lim_(n rarr oo)(2^(3n))/(3^(2n))=

lim_(n rarr oo) (1.2 +2.3+3.4+ .....+n(n+1))/n^(3)=

lim_(n rarr oo)(2^(n)+3^(n))^(1/n)

lim_(n rarr oo)(1^(2)+2^(2)+3^(2)+.........+n^(2))/(n^(3)) is equal to -

lim_ (n rarr oo) (1 + 2 + 3 + ...... + n) / (n ^ (2))