Home
Class 12
MATHS
[x+y=1],[x+z=-6],[x-y-2z=3]...

[x+y=1],[x+z=-6],[x-y-2z=3]

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that : |[x, y, z ],[x^2,y^2,z^2],[x^3,y^3,z^3]|=x y z(x-y)(y-z)(z-x)dot

2x+y+z=1x-y+2z=-1,3x+2y-z=4

By using Cramer's solve x+y+z=1,2x+2y+3z=6,x+4y+9z=3

2x + 3y-5z = 7, x + y + z = 6,3x-4y + 2z = 1, then x =

x+y+z+w=1,x-2y+2z+2w=-6,2x+y-2z+2w=-5,3x-y+3z-3w=

Solve the system of equations using matrix method. x+y+z=1 , 2x+3y-z=6 , x-y+z=-1

" (d) "|[x,y,z],[x^(2),y^(2),z^(3)],[yz,zx,xy]|=|[1,1,1],[x^(3),y^(2),z^(2)],[x^(3),y^(3),z^(3)]|

x+y-z=1 3x+y-2z=3 x-y-z=-1

2x-y+z=6,x+2y+3z=3,3x+y-z=4

Show that each of the following systems of linear equations is consistent and also find their solutions: 6x+4y=2 9x+6y=3 2x+3y=5 6x+9y=15 5x+3y+7z=4 3x+26 y+2z=9 7x+2y+10 z=5 x-y+z=3 2x+y-z=2 -x-2y+2z=1 x+y+z=6 x+2y+3z=14 x+4y+7z=30 2x+2y-2z=1 4x+4y-z=2 6x+6y+2z=3