Home
Class 11
MATHS
li(x rarr oo)(sqrt(x^(2)+ax+b)-x)...

li_(x rarr oo)(sqrt(x^(2)+ax+b)-x)

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that lim_(x rarr oo)(sqrt(x^(2)+x+1)-x)!=lim_(x rarr oo)(sqrt(x^(2)+1)-x)

If lim_(x rarr-oo)(sqrt(x^(2)-ax)-x)=(1)/(2) then a=

lim_(x rarr oo)(sqrt(x^(2)+x)-x)

lim_(x rarr oo)(sqrt(x^(2)-x+1)-ax-b)=0, then a+b=

If lim_(x rarr oo)(sqrt(x^(2)-x+1)-ax-b)=0 then the value of a and b are given by:

lim_(x rarr oo)(sqrt(x^(2)-x-1)-ax-b)=0 where a>0, then there exists at least one a and b for which point (a,2b) lies on the line

If Lim_(x rarr a) (sqrt(x-b)-sqrt(a-b))/(x^(2)-a^(2))(a gt b) = 1/64 and Lim_(x rarr oo) (sqrt(x^(2)+ax)-sqrt(x^(2)+bx)) = 2 then the value of a/b, is

lim_(x rarr oo)(sqrt(4x^(2)+x)-sqrt((4x^(3))/(x+2)))(oo-oo) form

lim_(x rarr oo)(x( sqrt(1+x^(2))-x))