Home
Class 11
MATHS
" If "sqrt(y+x)+sqrt(y-x)=c," then show ...

" If "sqrt(y+x)+sqrt(y-x)=c," then show that "(dy)/(dx)=(y)/(x)-sqrt((y^(2))/(x^(2))-1)

Promotional Banner

Similar Questions

Explore conceptually related problems

If sqrt(y+x)+sqrt(y-x)=c show that (dy)/(dx)=(y)/(x)-sqrt(((y^(2))/(x^(2)))-1)

If sqrt(y+x)+sqrt(y-x)=c ,show that (dy)/(dx)=y/x-sqrt((y^2)/(x^2)-1.)

If sqrt(y+x) + sqrt(y-x) = a , then show that dy/dx = 2x/a^2

If y=sqrt(x)+(1)/sqrt(x) , then show that 2x(dy)/(dx)+y=2sqrt(x) .

If y=sqrt(x)+(1)/sqrt(x) , then show that 2x(dy)/(dx)+y=2sqrt(x) .

If y sqrt(1-x^(2))+x sqrt(1-y^(2))=1 show that (dy)/(dx)=-sqrt((1-y^(2))/(1-x^(2)))

If sqrt(x)+sqrt(y)=sqrt(10) , show that (dy)/(dx)+sqrt(y/x)=0

if y=sqrt(x^(2)+a^(2)), then show that y(dy)/(dx)=x