Home
Class 11
MATHS
Prove that :(tan(A+B))/("cot"(A-B))=(sin...

Prove that `:(tan(A+B))/("cot"(A-B))=(sin^2A-sin^2B)/(cos^2A-sin^2B)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that :(tan(A+B))/(cot(A-B))=(sin^(2)A-sin^(2)B)/(cos^(2)A-sin^(2)B)

Prove that (tan(A+B))/(cot(A-B))=(sin^(2) A-sin^(2)B)/(cos^(2)A-sin^(2)B) (when the denominators on both sides are non-zero)

Show that: tan(A+B).tan(A-B)=(sin^(2)A-sin^(2)B)/(cos^(2)A-sin^(2)B).

Show that cot(A+B)cot(A-B)=(cos^2A-sin^2B)/(sin^2A-sin^2B)

Prove that (sin^Acos^B-cos^2Asin^2B)=(sin^2A-sin^2B)

"Prove that" tan (A+B) - tan (A - B) = (sin2 B)/(cos^(2)B - sin^(2) A).

Prove that sin(A+B)sin(A-B)=sin^(2)A-sin^(2)B=cos^(2)B-cos^(2)A

Prove that : sin (A + B) sin (A - B) = sin^2A- sin^2B .

Show that tan^2A-tan^2B=(sin^2A-sin^2B)/(cos^2Acos^2B)

Prove that cos(A+B)cos(A-B)=cos^(2)A-sin^(2)B=cos^(2)B-sin^(2)A