Home
Class 12
MATHS
" co (iv) "log[e^(x)((x-2)/(x+2))^(3/4)]...

" co (iv) "log[e^(x)((x-2)/(x+2))^(3/4)]

Promotional Banner

Similar Questions

Explore conceptually related problems

f (x) = log (e ^(x) ((x-2)/(x +2))^(3//4))impliesf'(0)=

Find the derivatives w.r.t. x : log[e^(x)((x-2)/(x+2))^((3)/(4))]

Find the derivatives w.r.t.X (i)log(e^(x)((x-2)/(x+2))^((3)/(4)))

for x^(2) - 4 ne 0 , the value of (d)/(dx)[log{e^(x) ((x - 2)/(x+2))^(3//4)}]at x = 3 is

If y = log {:{(e^x((x-2)/(x+2))^3/4):}} , show that dy/dx = (x^2 -1)/(x^2-4)

A : (a-b)/(a)+(1)/(2)((a-b)/(a))^(2)+(1)/(3)((a-b)/(a))^(3)+....=log_(e)((a)/(b)) R : log_(e)(1-x)=-x-(x^(2))/(2)-(x^(3))/(3)-(x^(4))/(4)-....

(cos x)/("log"_(e)x)

Solve the following equations : (i) log_(x)(4x-3)=2 (ii) log_2(x-1)+log_(2)(x-3)=3 (iii) log_(2)(log_(8)(x^(2)-1))=0 (iv) 4^(log_(2)x)-2x-3=0

Solve the following equations : (i) log_(x)(4x-3)=2 (ii) log_2)(x-1)+log_(2)(x-3)=3 (iii) log_(2)(log_(8)(x^(2)-1))=0 (iv) 4^(log_(2)x)-2x-3=0