Home
Class 11
MATHS
Prove that each member of the family of ...

Prove that each member of the family of straight lines `(3 sin theta + 4cos theta)x + (2sin theta -7cos theta )y + (sin theta + 2cos theta ) = 0` (`theta` is a parameter) passes through a fixed point

Promotional Banner

Similar Questions

Explore conceptually related problems

If (sin theta+cos theta)/(sin theta-cos theta)=3 then sin^4 theta-cos^4 theta=

(cos theta + sin theta )/( cos theta - sin theta )-(cos theta - sin theta )/( cos theta + sin theta ) =

Show that (Sin theta + Cos theta)^2 - (Sin theta - Cos theta)^2 = 4 Sin theta Cos theta

Prove that, (1 + sin 2 theta - cos 2 theta)/(sin theta + cos theta)= 2 sin theta

(sin theta + cos theta)/(sin theta - cos theta) + (sin theta - cos theta)/(sin theta + cos theta)= ________

Prove that: (sin^(3) theta + cos^(3) theta)/(sin theta + cos theta) = 1-sin theta cos theta

Prove that : (1+sin2 theta-cos 2theta)/(sin theta+cos theta)=2sin theta

Prove that: (sin theta - 2 sin^(3) theta) = (2cos^(3) theta - cos theta) tan theta .

If (sin theta + cos theta)/(sin theta - cos theta)=3 , then the value of sin^(4)theta - cos^(4)theta is:

if theta is a parameter then x=a ( sin theta + cos theta), y=b( sin theta - cos theta ) respresents