Home
Class 12
MATHS
Find the integral values of n for the eq...

Find the integral values of n for the equations :
(a) `(1+i)^(n)=(1-i)^(n)`
(b) `(1-i)^(n)=2^(n)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the least possible integral value of n so that ((1+i)/(1-i))^n' is real

Find the value of : (1+i)^n, n inN

(1+i)^(2 n)+(1-i)^(2 n), n in z is

The least positive integral value of n for which ((1-i)/(1+i))^(2n) = 1 is

The least positive integral value of n for which ((1+i)/(1-i))^n=1 is

Find the least positive integral value of n so that ((1+i)/(1-i))^(n)=1 [Hint : Note that ((1+i)/(1-i))and i^(4)=1]

Find the smallest positive integer value of n for which ((1+i)^n)/((1-i)^(n-2)) is a real number.

For positive integer n_1,n_2 the value of the expression (1+i)^(n1) +(1+i^3)^(n1) (1+i^5)^(n2) (1+i^7)^(n_20), where i=sqrt-1, is a real number if and only if (a) n_1=n_2+1 (b) n_1=n_2-1 (c) n_1=n_2 (d) n_1 > 0, n_2 > 0

For positive integer n_1,n_2 the value of the expression (1+i)^(n1) +(1+i^3)^(n1) (1+i^5)^(n2) (1+i^7)^(n_20), where i=sqrt-1, is a real number if and only if (a) n_1=n_2+1 (b) n_1=n_2-1 (c) n_1=n_2 (d) n_1 > 0, n_2 > 0