Home
Class 12
MATHS
If f(x)=(e^(1//x)-1)/(e^(1//x)+1)" for "...

If `f(x)=(e^(1//x)-1)/(e^(1//x)+1)" for "x ne 0, f(0)=0" then at x=0, f(x) is"`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=(x)/(1+e^(1//x))"for "x ne 0, f(0)=0" then at x=0, f(x) is"

The function f(x) =(e^(1//x^(2))/(e^(1//x^(2))-1)" for "x ne 0,f(0)=1" at x =0 is"

The function f(x) =(xe^(1//x))/(1+e^(1//x))+sin""1/x" for "x ne 0, f(0)=0" at x=0 is

If f(x)=x sin ""1/x"for "x ne 0, f(0)=0" then at x"=0, f(x) is

f (x) = (e^(1//x^(2)))/(e^(1//x^(2))-1) , x ne 0, f (0) = 1 then f at x = 0 is

Discuss the continulity of f(x) = (e^(1/x) -1)/(e^(1/x) + 1) , x ne 0 and f(0) = 0 at x = 0 .

f(x)={{:(e^(1//x)/(1+e^(1//x)),if x ne 0),(0,if x = 0):}at x = 0

f(x)={{:(e^(1//x)/(1+e^(1//x)),if x ne 0),(0,if x = 0):} at x = 0

f(x)={{:(e^(1//x)/(1+e^(1//x)),if x ne 0),(0,if x = 0):} at x = 0

Discuss the continuity of f ( x ) = (e^(1)/(x)-1)/(e^(1)/(x)+1), x ne 0 and f(0) = 0 at x=0