Home
Class 11
MATHS
If (1+tan5^0)(1+tan10^0)..... (1+tan45^0...

If `(1+tan5^0)(1+tan10^0)..... (1+tan45^0)=2^(k+1)`, then k is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

Let (1+tan1^(ul0))(1+tan2^(ul0))......(1+tan45^(ul0))=2^(k) then k equal to

If (1+tan1^(@)) *(1+tan2^(@))*(1+tan3^(@)) …….(1+tan45^(@)) = 2^(n) , then 'n' is equal to :

If tanA, tanB and tan C are the roots of equation x^(3)-alpha x^(2)-beta=0 ,and (1+tan^(2)A)(1+tan^(2)B)(1+tan^(2)C)=k-1 ,then k is equal to:

If tan3A=(3 tan A+k tan^(3)A)/(1-3 tan^(2)A) , then k is equal to

(1 - tan^2 45^0)/(1 + tan^2 45^0)

Prove that (1+tan1^(0))(1+tan2^(0))......(1+tan45^(@))=2^(23)

(1+tan1^(0))(1+tan2^(0))(1+tan3^(0)).......(1+tan45^(0)) =?

(1+tan3^(@))(1+tan6^(@))....(1+tan42^(@))(1+tan45^(@)=2^(k) Then find the value of k

Prove that (1+tan1^(@))(1+tan2^(@))...(1+tan45)=2^(23)