Home
Class 12
MATHS
The set of all the possible values of a ...

The set of all the possible values of a for which the function `f(x)=5+(a-2)x+(a-1)x^(2)-x^(3)` has a local minimum value at some `x<1` and local maximum value at some `x>1` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The set of all values of a for which the function f(x)=((a^2-1)/3)x^3+(a-1)x^2+2x+1 increases on R, is

The set of all the possible values of the parameter 'a' so that the function, f(x) = x^(3)-3(7-x)x^(2)-3(9-a^(2))x+2 , assume local minimum value at some x in (-oo, 0) is -

Find the sum of all possible integral values of in [1,100] for which the function f(x)=2x^(3)-3(2+alpha)x^(2) has exactly one local maximum and one local minimum.

The number of integral values of a in [0,10) so that function, f(x)=x^(3)-3(7-a)x^(2)-3(9-a^(2))x+2017 assume local minimum value at some xepsilonR^(-)

The function f(x)=(x)/(2)+(2)/(x) has a local minimum at x=2( b) x=-2x=0 (d) x=1

The set of values of x for which the function f(x)=(1)/(x)+2^(sin^(-1)x)+(1)/(sqrt(x-2)) exists is