Home
Class 12
MATHS
If sum n^2=2870, then sumn^3= (A) 44100 ...

If `sum n^2=2870, then sumn^3=` (A) 44100 (B) 48400 (C) 52900 (D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If sum _(r=1)^n (r^2+1)r! =200xx201! Then n= (A) 200 (B) 201 (C) 199 (D) none of these

If (2+x)(2+x^2)(2+x^3)………..(2+x^100)=sum_(r=0)^n k_rx^r, then n= (A) 2550 (B) 5050 (C) 2^8 (D) none of these

If (2+x)(2+x^2)(2+x^3)………..(2+x^100)=sum_(r=0)^n k_rx^r, then n= (A) 2550 (B) 5050 (C) 2^8 (D) none of these

If a=sum_(r=1)^oo(1/r)^2, b=sum_(r=1)^oo1/((2r-1)^2), then a/b= (A) 5/4 (B) 4/5 (C) 3/4 (D) none of these

If a=sum_(r=1)^oo(1/r)^2, b=sum_(r=1)^oo1/((2r-1)^2), then a/b= (A) 5/4 (B) 4/5 (C) 3/4 (D) none of these

If sum_(r=1)^n t_r= (n(n+1)(n+2))/3 then sum _(r=1)^oo 1/t_r= (A) -1 (B) 1 (C) 0 (D) none of these

If 1^2+2^2+3^2+n^2=1015 then the value of n is equal to (A) 13 (B) 14 (C) 15 (D) none of these

If 1^2+2^2+3^2+n^2=1015 then the value of n is equal to (A) 13 (B) 14 (C) 15 (D) none of these

If sum_(r=1)^20(r^2+1)r!=k!20 then sum of all divisors of k of the from 7^n, n epsilin N is (A) 7 (B) 58 (C) 350 (D) none of these

If sum_(r=1)^20(r^2+1)r! =k!20 then sum of all divisors of k of the from 7^n, n epsi N is (A) 7 (B) 58 (C) 350 (D) none of these