Home
Class 12
MATHS
माना (-2-(1)/(3) i)^(3) = (x+ iy)/(27) (...

माना `(-2-(1)/(3) i)^(3) = (x+ iy)/(27) (i= sqrt-1)`, जहाँ x तथा y वास्तविक संख्याएँ हैं , तो `y-x` बराबर है

Promotional Banner

Similar Questions

Explore conceptually related problems

If (-2-(1)/(3)i)^(3)= (x+iy)/(27),xy, in R then y-x equals

Let (-2 -1/3 i)^3=(x+iy)/27 (i= sqrt(-1)) where x and y are real numbers then y-x equals

Let (-2 -1/3 i)^3=(x+iy)/27 (i= sqrt(-1)) where x and y are real numbers then y-x equals

Let (-2 -1/3 i)^3=(x+iy)/27 (i= sqrt(-1)) where x and y are real numbers then y-x equals

Let (-2 -1/3 i)^3=(x+iy)/27 (i= sqrt(-1)) where x and y are real numbers then y-x equals

If frac(1)(x+frac(1)(y+frac(2)(z+frac(1)(4)))) = 29/79 where x,y and z are natural numbers, then the value of (2x + 3y -z)is: यदि फ़्रेक (1) (x + फ़्रेक (1) (y + फ़्रेक (2) (z + फ़्रेक (1) (4)))) = 29 / 79 जहाँ x, y और z प्राकृतिक संख्याएँ हैं, तब (2x + 3y -z) का मान है:

If ((1+i)/(1-i))^(2)=x+iy, find x+y

If ((1+i)/(1 -i)) - ((1 - i)/(1 +i)) = x +iy find x and y .

If x and y are natural numbers such that x+ y = 2017, then what is the value of (-1)^x + (- 1)^y ? यदि x तथा y प्राकृतिक संख्याएँ इस प्रकार है कि x+y = 2017 है, तो (-1)^x + (- 1)^y का मान क्या है?