Home
Class 12
MATHS
If M and m are the maximum and minimum v...

If M and m are the maximum and minimum values respectively of the function `f(x)= x+ (1)/(x)` , then the value of M - m is-

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=(x+3)^(2)(x-2)^(3),x in[-4,4] .If "M" and "m" are the maximum and minimum values of "f" ,respectively in [-4,4] ,then the value of "M-m" is

If M and m are maximum and minimum value of the function f(x)= (tan^(2)x+4tanx+9)/(1+tan^(2)x) , then (M + m) equals

If M and m are maximum and minimum value of the function f(x)= (tan^(2)x+4tanx+9)/(1+tan^(2)x) , then (M + m) equals

If M and m are maximum and minimum value of the function f(x)= (tan^(2)x+4tanx+9)/(1+tan^(2)x) , then (M + m) equals

Let M and m respectively be the maximum and minimum values of the function f(x) = tan^(-1) (sin x + cos x) " in " [0, (pi)/(2)] . Then the vlaue of tan (M-m) is equal to :

If M and m are the greatest and least value of the function f(x)=(cos^(-1)x)^2+(sin^(-1)x)^2 then the value of ((M+9m)/m)^3 is …..

If M and m are the greatest and least value of the function f(x)=(cos^(-1)x)^2+(sin^(-1)x)^2 then the value of ((M+9m)/m)^3 is …..

Consider a real valued continuous function f such that f(x)=sinx + int_(-pi//2)^(pi//2) (sinx+t(f(t))dt . If M and m are maximum and minimum values of function f , then the value of M//m is____________.

Consider a real valued continuous function f such that f(x)=sinx + int_(-pi//2)^(pi//2) (sinx+t(f(t))dt . If M and m are maximum and minimum values of function f , then the value of M//m is____________.

Consider a real valued continuous function f such that f(x)=sinx + int_(-pi//2)^(pi//2) (sinx+t(f(t))dt . If M and m are maximum and minimum values of function f , then the value of M//m is____________.