Home
Class 12
MATHS
let f (x) = int (0) ^(x) e ^(x-y) f'(y) ...

let `f (x) = int _(0) ^(x) e ^(x-y) f'(y) dy - (x ^(2) -x+1)e ^(x)`
Find the number of roots of the equation `f (x) =0.`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f (x) =e^(x)+ int_(0)^(1) (e^(x)+te^(-x))f (t) dt, find f(x) .

If f(x)=x+int_0^1(xy^2+x^2y) dy find f(x)

If f(x) =x + int_(0)^(1) (xy^(2)+x^(2)y)(f(y)) dy, "find" f(x) if x and y are independent.

If f(x) =x + int_(0)^(1) (xy^(2)+x^(2)y)(f(y)) dy, "find" f(x) if x and y are independent.

Let f(x)=int_(0)^(x)(e^(t))/(t)dt(xgt0), then e^(-a)[f(x+1)-f(1+a)]=

Let f(x)=int_(0)^(x)(e^(t))/(t)dt(xgt0), then e^(-a)[f(x+1)-f(1+a)]=

Let f(x)=int_(0)^(x)(e^(t))/(t)dt(xgt0), then e^(-a)[f(x+1)-f(1+a)]=

If f (x,y) =e ^(2x+3y) find 3f_(x) (0,0) - 2f_(y) (0,0):