Home
Class 12
MATHS
यदि y = e^(tanx) , तो सिद्ध करें कि c...

यदि `y = e^(tanx)` , तो सिद्ध करें कि
`cos^(2)x*(d^(2)y)/(dx^(2)) - (1 + sin 2x)(dy)/(dx) = 0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y= e^(tan x) then show that, (cos^(2)x) (d^(2)y)/(dx^(2))- (1+ sin 2x) (dy)/(dx)=0

Find the second order derivative of the following functions If y = e^(tan x) , prove that cos^2 x(d^2 y)/(dx^2) - (1 +sin 2x) (dy)/(dx) = 0

If y=e^tanx then prove that: cos^2x(d^2y)/(dx^2)-(1+sin2x)(dy)/dx=0

If y=e^tanx then prove that: cos^2x(d^2y)/(dx^2)-(1+sin2x)(dy)/dx=0

If y= e ^(mcos ^(-1)x) ,then (1-x^(2) ) (d^(2)y)/(dx^(2)) -x(dy)/(dx)=

If y = e^(x) (sin x + cos x ) , prove that (d^(2) y)/( dx^(2)) - 2 (dy)/( dx) + 2 y = 0

e^(-x) (dy)/(dx) = y(1+ tanx + tan^(2) x)

If y=sin (msin ^(-1) x),then (1-x^(2))(d^(2)y)/(dx^(2))-x( dy)/(dx)=

If y= e^(a cos^(-1)x), -1 le x le 1 , show that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)-a^(2)y=0 .

If y= e^(a cos^(-1)x), -1 le x le 1 , show that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)-a^(2)y=0 .