Home
Class 11
MATHS
The general solution of the equation tan...

The general solution of the equation `tanx+tan(x+pi/3)+tan(x+(2pi)/3) = 3` and why can't we use `tanA+tanB+tanC=tanA.tanB.tanC`

Promotional Banner

Similar Questions

Explore conceptually related problems

The general solution of the equation tan x+tan(x+(pi)/(3))+tan(x+(2 pi)/(3))=3 is

If A+B+C=pi , Prove that tanA+tanB+tanC=tanA.tanB.tanC

If A+B+C = pi //2 , then tanA tanB + tanB tanC+ tan A tan C=

In a triangle, tanA + tanB + tanC = 6 and tanA tanB = 2 , then the values of tanA, tanB, tanC are :

If A, B, C are angles of a triangle and if none of them is equal to pi/2 , then prove that tanA+tanB+tanC=tanAtanBtanC

If A+B+C= pi/2 , show that : tanA tanB + tanB tanC + tanC tanA=1

If A+B+C= pi/2 , show that : tanA tanB + tanB tanC + tanC tanA=1

If x=180^(@) ,A = (pi)/(3) and B=(pi)/(6) Prove that tan(A-B)= (tanA-tanB)/(1+tanAtanB)

In a triangle tanA+tanB+tanC=6 and tanAtanB=2 , then the values of tanA, tanB and tanC are

If, in a triangleABC , tanA =1 and tanB=2, then: tanC=