Home
Class 12
PHYSICS
ABCDEF is a regular hexagon with point O...

ABCDEF is a regular hexagon with point O as centre. Find the value of `vec(AB) + vec(AC) + vec(AD) + vec(AE) + vec(AF)`

Text Solution

Verified by Experts

From the diagram
`(vecAB)=-(vecDE)(vec BC=-vec EF)`
`vec(AB)+vec(AC)+vec(AD)+vec(AE)+(vecAF)`
`cancel vec(AB)+(cancel vec(AB)+cancel vec(BC))+vec(AD)+(vec(AD)+cancel vec(DE))+(vec(AD)+cancel vec(DE)+cancel vec(EF))`
`=3vec(AD)=3(2vec(AO))=6(vec(AO))`
Promotional Banner

Topper's Solved these Questions

  • MOTION IN A PLANE

    AAKASH SERIES|Exercise EXERCISE-A (Vectors & Scalars)|25 Videos
  • MOTION IN A PLANE

    AAKASH SERIES|Exercise EXERCISE-A (Addition & Subtractions of Vectors)|10 Videos
  • MAGNETISM

    AAKASH SERIES|Exercise PROBLEMS (LEVEL-II)|13 Videos
  • MOTION IN A PLANE

    AAKASH SERIES|Exercise QUESTION FOR DESCRIPTIVE ANSWER|7 Videos

Similar Questions

Explore conceptually related problems

Find the value of (vec(a) + vec(b)) xx (vec(a) - vec(b)) =

Find the angle between the vectors vec(i) + 2vec(j) + 3vec(k) and 3vec(i) - vec(j) + 2vec(k) .

ABCDEF is a regualar hexagon whose centre is O. Then bar(AB)+bar(AC)+bar(AD)+bar(AE)+bar(AF) is

If ABCDEF is a regular hexagon with centre O , then P.T bar(AB)+bar(AC)+bar(AD)+bar(AE)+bar(AF)=3bar(AD)=6bar(AO)

For any vector vec(a) , the value of (vec(a) xx vec(i))^(2) + (vec(a) xx vec(j))^(2) + (vec(a) xx vec(k))^(2)=

Let vec(a)= vec(i) + vec(j), vec(b)= 2vec(i) -vec(k) . Then the point of intersection of the lines vec(r ) xx vec(a) = vec(b) xx vec(a) and vec(r ) xx vec(b)= vec(a) xx vec(b) is

If ABCD is a quadrillateral such that vec(AB) = vec(i) + 2vec(j), vec(AD)= vec(j) + 2vec(k) and vec(AC)= 2 (vec(i) + 2vec(j)) + 3(vec(j) + 2vec(k)) , then area of the quadrilateral ABCD is

Three vectors vec(A), vec(B), vec(C) are shown in the figure. Find angle between (i) vec(A) and vec(B) (ii) vec(B) and vec(C) (iii) vec(A) and vec(C) .