Similar Questions
Explore conceptually related problems
Recommended Questions
- If : int(f(x))/(log(cosx))dx=-log[log(cosx)]+c, then : f(x)=
Text Solution
|
- int(f'(x))/(f(x))dx=log f(x)+c
Text Solution
|
- If intf (x)sinx cosx dx=(1)/(2(a^(2)-b^(2)))log|f(x)|+C,then f (x)=
Text Solution
|
- If int(f(x))/(log(sinx))dx=log[log sinx]+c, then f(x) is equal to
Text Solution
|
- If int (f(x))/(log (sin x))dx =log [log sin x]+c , then f(x) =
Text Solution
|
- If : int(f(x))/(log(cosx))dx=-log[log(cosx)]+c, then : f(x)=
Text Solution
|
- inte^(x)[tanx-log(cosx)]dx=
Text Solution
|
- If f(x)=log(cosx), then domain f=
Text Solution
|
- If f(x)=log(cosx), then which of the following is f''(x) ?
Text Solution
|