Home
Class 12
MATHS
The sum of the infinite terms of the ser...

The sum of the infinite terms of the series `cot^(-1)(1^2+3/4)+cot^(-1)(2^2+3/4)+cot^(-1)(3^2+3/4)+...+oo` is equal to a.`tan^(-1)(1)` b. `tan^(-1)\ \ (2)` c.`tan^(-1)2\ ` d. `(3pi)/4-tan^(-1)3`

Promotional Banner

Similar Questions

Explore conceptually related problems

Sum of infinite terms of the series cot^(-1)(1^(2)+3/4)+cot^(-1)(2^(2)+3/4)+cot^(-1)(3^(2)+3/4)+….. is

Sum to infinite terms the series: cot^-1(1^2+ 3/4)+cot^-1 (2^2+3/4)+cot^-1 (3^2+3/4)+….

Sum of infinite terms of the series cot^(-1) ( 1^(2) + 3/4) + cot^(-1) ( 2^(2) + 3/4) + cot^(-1) ( 3^(2) + 3/4) + ... is

Sum of infinite terms of the series cot^(-1) ( 1^(2) + 3/4) + cot^(-1) ( 2^(2) + 3/4) + cot^(-1) ( 3^(2) + 3/4) + ... is

Sum of infinite terms of the series cot^(-1) ( 1^(2) + 3/4) + cot^(-1) ( 2^(2) + 3/4) + cot^(-1) ( 3^(2) + 3/4) + ... is

The sum to infinite terms of the series cot^(- 1)(2^2+1/2)+cot^(- 1)(2^3+1/(2^2))+cot^(- 1)(2^4+1/(2^3))+... is

The sum of infinite terms of the series cot^(-1)(2^(2)+1/2)+cot^(-1)(2^(3)+1/2^(2))+cot^(-1)(2^(4)+1/2^(3))+…=cot^(-1)k then k =

The sum to infinite terms of the series cot^(-1)(2^(2)+(1)/(2))+cot^(-1)(2^(3)+(1)/(2^(2)))+cot^(-1)(2^(4)+(1)/(2^(3)))+

tan^(-1)3+"cot"^(-1)3=(pi)/2

Prove that tan^(-1) 2 + tan^(-1) 3 = (3pi)/4