Home
Class 11
MATHS
" If "bar(A)=2hat i+hat jmath+hat k" and...

" If "bar(A)=2hat i+hat jmath+hat k" and "bar(B)=hat i+hat j+hat k" are two vectors,then the unit vector "

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec(A)=2hat(i)+hat(j)+hat(k) and vec(B)=hat(i)+hat(j)+hat(k) are two vectors, then the unit vector is

If vec(A)=2hat(i)+hat(j)+hat(k) and vec(B)=hat(i)+hat(j)+hat(k) are two vectors, then the unit vector is

If bar a=hat i+hat j-4hat k and bar(b)=hat 4i-hat j-2hat k then find (i) a unit vector in the direction of the vector (2bar(a)-bar(b))

If bar(a)=hat i+2hat j-hat k and bar(b)=3hat i+hat j-5hat k find a unit vector in a direction parallel to vector (bar(a)-bar(b))

Let bar a= hat i+ hat j+ hat k ,""b= hat i- hat j+2 hat k and bar c=x hat i+(x-2) hat j- hat k . If the vector c lies in the plane of a and b , then x equals

For given vectors, -> a=2 hat i- hat j+2 hat k and -> b=- hat i+ hat j- hat k find the unit vector in the direction of the vector -> a+ -> b .

For given vectors, vec a =2 hat i- hat j+2hat k and vec b =-hat i +hat j - hat k , find the unit vector in the direction of the vector vec a+ vec b .

If bar(P)=hat i+hat j+hat k,bar(Q)=2hat i-hat j-hat k , then bar(P)-bar(Q) is

For given vectors vec a = 2 hat i - hat j + 2 hat k and vec b = - hat i + hat j - hat k , find the unit vector in the direction of the vector vec a + vec b .

For given vectors,vec a=2hat i-hat j+2hat k and vec b=-hat i+hat j-hat k find the unit vector in the direction of the vector quad vec a+vec b