Home
Class 12
MATHS
The value of (sin frac(pi)(8) + i cos fr...

The value of `(sin frac(pi)(8) + i cos frac(pi)(8))^(8)/((sin frac(pi)(8) - i cos frac(pi)(8))^(8))` is :

Promotional Banner

Similar Questions

Explore conceptually related problems

The smallest positive integral value of ‘n’ such that [(1+sin frac (pi)(8)+i cos frac (pi)(8))/(1+sin frac (pi)(8)-i cos frac (pi)(8))]^n is purely imaginary is n =

Evaluate : sin frac (3 pi)(8) .

((sin((pi)/(8))+i cos((pi)/(8)))^(8))/((sin((pi)/(8))-i cos((pi)/(8)))^(8)) =

Evaluate : tan frac (pi)(8) .

The value of : (1+cos frac (pi)(6)) (1+cos frac (pi)(3))(1+cos frac (2pi)(3)) (1+cos frac (7pi)(6)) is:

The smallest positive integral value of ' n ' such that [(1+sin (pi)/(8)+i cos (pi)/(8))(1+sin (pi)/(8)-i cos (pi)/(8))]^(n) is purely imaginary is

Prove that : (1+cos frac (pi)(8)) (1+cos frac (3pi)(8)) (1+cos frac (5pi)(8)) (1+cos frac (7pi)(8))=1/8 .

Prove that : 3 sin frac (pi)(6) sec frac (pi)(3)-4 sin frac (5pi)(6) cot frac(pi)(4)=1 .

The expression [(1+sin((pi)/(8))+i cos((pi)/(8)))/(1+sin((pi)/(8))-i cos((pi)/(8)))]^(8)