Home
Class 11
MATHS
If a(ij)=i^(2)-j and A=(a(ij))(2xx2)is:...

If `a_(ij)=i^(2)-j` and `A=(a_(ij))_(2xx2)`is:

Promotional Banner

Similar Questions

Explore conceptually related problems

If a_(ij)=(1)/(2) (3i-2j) and A = [a_(ij)]_(2xx2) is

If a_(ij)=|2i + 3j^(2)|, then matrix A_(2xx2) = [a_(ij)] will be:

If a_(ij) = | i-j| then construct [a_(ij)]_(2xx3) .

If matrix A=[a_(ij)]_(3xx2) and a_(ij)=(3i-2j)^(2) , then find matrix A.

Construct a2xx2 matrix , A=[a_(ij)] , whose elements are given by : (i) a_(ij)=((i+j)^(2))/(2) , (ii) a_(ij)=(i)/(j) (iii) a_(ij)=((i+2j)^(2))/(2)

If A=[a_(ij)]_(2xx3) , difined as a_(ij)=i^(2)-j+1 , then find matrix A.

if A=[a_(ij)]_(2*2) where a_(ij)={i+j,i!=j and a_(ij)=i^(2)-2j,i=j then A^(-1) is equal to

Construct a 2xx2 matrix A=[a_(ij)] whose elements a_(ij) are given by: ( i) a_(ij)=((2i+j)^(2))/(2) (ii) a_(ij)=(|2i-3j|)/(2)( (iii) a_(ij)=(|-3i+j|)/(2)