Home
Class 12
MATHS
There exists a positive real number of x...

There exists a positive real number of `x` satisfying `"cos"(tan^(-1)x)=xdot` Then the value of `cos^(-1)((x^2)/2)i s` `pi/(10)` (b) `pi/5` (c) `(2pi)/5` (d) `(4pi)/5`

Promotional Banner

Similar Questions

Explore conceptually related problems

There exists a positive real number of x satisfying cos(tan^(-1)x)=x. Then the value of cos^(-1)((x^(2))/(2)) is (pi)/(10) (b) (pi)/(5) (c) (2 pi)/(5) (d) (4 pi)/(5)

The value of sin^(-1)(cos(33pi)/5) is (a) (3pi)/5 (b) -pi/(10) (c) pi/(10) (d) (7pi)/5

The value of sin^(-1)(cos(33pi)/5) is (3pi)/5 (b) pi/(10) (c) pi/(10) (d) (7pi)/5

The value of sin^(-1)(cos((33pi)/5)) is (a) (3pi)/5 (b) -pi/(10) (c) pi/(10) (d) (7pi)/5

The value of cos^(-1)(cos(5pi)/3)+sin^(-1)(sin(5pi)/3) is pi/2 (b) (5pi)/3 (c) (10pi)/3 (d) 0

If sin^(-1)x+sin^(-1)y=(2 pi)/(3) ,then the value of cos^(-1)x+cos^(-1)y is (A) (2 pi)/(3) (B) (pi)/(3) (C) (pi)/(2) (D) pi

The value of cos^(-1)(cos((5pi)/3))+sin^(-1)(sin((5pi)/3)) is (a) pi/2 (b) (5pi)/3 (c) (10pi)/3 (d) 0

The value of cos (pi)/(5) . cos (2 pi)/(5). cos (4 pi)/(5) . cos (8 pi)/(5) is