Home
Class 12
MATHS
Let f(x)=x^(3) + bx^(2) +cx +d, 0 lt b^(...

Let `f(x)=x^(3) + bx^(2) +cx +d, 0 lt b^(2) lt c `. Then f(x)-

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) = x^(3) + bx^(2) + cx +d and 0lt b^(2) lt c .then in (-infty, infty)

If f(x) = x^(3) + bx^(2) + cx + d and 0 lt b^(2) lt c , then in (-oo, oo) , a)f(x) is a strictly increasing function b)f(x) has local maxima c)f(x) is a strictly decreasing function d)f(x) is bounded

If f(x)=x^(3)+bx^(2)+cx+d and 0 lt b^(2) lt c , then in (-oo, oo), f(x) :

If f(x)=x^3+bx^3+cx+d and 0 lt b^2 lt c "then in" (-oo,oo)

If f(x)=x^3+bx^2+cx+d and 0< b^2 < c , then

If f(x)=x^3+bx^2+cx+d and 0< b^2 < c , then

Let f(x)=ax^(3)+bx^(2)+cx+d,a!=0 If x_(1) and x_(2) are the real and distinct roots of f'(x)=0 then f(x)=0 will have three real and distinct roots if

Let f(x) =ax^(2) + bx + c and f(-1) lt 1, f(1) gt -1, f(3) lt -4 and a ne 0 , then