Home
Class 9
MATHS
" (1) "z=-1-i sqrt(3)...

" (1) "z=-1-i sqrt(3)

Promotional Banner

Similar Questions

Explore conceptually related problems

Principal argument of z=-1-i sqrt(3)

If z_(1)=1+i sqrt(3) , z_(2)=1-i sqrt(3), then (z_(1)^(100)+z_(2)^(100))/(z_(1)+z_(2))=

If n is a positive integer but not a multiple of 3 and z=-1+i sqrt(3), then (z^(2n)+2^(n)z^(n)+2^(2n)) is equal to

Find the modulus and the arguments of the complex number z=-1quad -i sqrt(3)

z_(1), z_(2) ,z_(3) are vertices of a triangle ABC having area Delta satisfies (z_(3)-z_(1))=(1-i sqrt(3))(z_(2)-z_(1)) and sqrt(3)|z_(2)-z_(3)|^(2)=k Delta then value of k^(2)=

Represent the complex number z=1+i sqrt(3) in the polar form.

If z_(1)=sqrt(3)-i, z_(2)=1+i sqrt(3) , then amp (z_(1)+z_(2))=

Let z _(1) = 1 + i sqrt3 and z _(2) = 1 + i, then arg ((z _(1))/( z _(2))) is