Home
Class 12
MATHS
यदि bar(a),bar(b),bar(c ) तीन परस्पर लम्...

यदि `bar(a),bar(b),bar(c )` तीन परस्पर लम्बवत मात्रक सदिश है , तो सिद्ध कीजिये कि `|bar(a)+bar(b)+bar(c )| = sqrt(3)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If bar(a) is a perpendicular to bar(b) and bar(c), |bar(a)|=2, |bar(b)|=3, |bar(c)|=4 and the angle between bar(b) and bar(c) is (2pi)/(3) then |[bar(a) bar(b) bar(c)]| =

bar(a) , bar(b) and bar(c) are three vectors such that bar(a) + bar(b) + bar(c) = bar(0) and |bar(a)| =2, |bar(b)| =3, |bar(c)| =5 ,then bar(a) . bar(b) + bar(b) . bar(c) + bar(c) . bar(a) equals

If bar(a),bar(b),bar(c) are any three vectors, prove that (1) [bar(a)+bar(b)" "bar(a)+bar(c)" "bar(b)]=[bar(a)" "bar(c)" "bar(b)] (2) [bar(a)-bar(b)" "bar(b)-bar(c)" "bar(c)-bar(a)]=0 .

bar(a),bar(b) and bar( c ) are non zero vectors. |(bar(a)xx bar(b))*bar( c )|=|bar(a)||bar(b)||bar( c )| then ……………

If bar(a),bar(b),bar(c) are non-coplanar unit vectors such that bar(a)times(bar(b)timesbar(c))=(sqrt(3))/(2)(bar(b)+bar(c)) then the angle between bar(a) and bar(b) is ( bar(b) and bar(c) are non collinear)

If bar(a), bar(b), bar(c) are non coplanar, show that the vectors bar(a)+2bar(b)-bar(c), 2bar(a)-3bar(b)+2bar(c), 4bar(a)+bar(b)+3bar(c) are linearly independent.

If |bar(a)| = 2, |bar(b)| = 3, |bar(c )| = 4 and each of bar(a), bar(b) , bar(c ) is perpendicular to the sum of the other two vectors, then find the magnitude of bar(a) + bar(b) + bar(c ) .