Home
Class 11
MATHS
If alpha,beta are the roots of a x^2+b x...

If `alpha,beta` are the roots of `a x^2+b x+c=0(a!=0)a n dalpha+delta,beta+delta` are roots of `A x^2+B x+C=0(A!=0)` for some constant `delta` , then prove that `b^2-4a c//a^2=(B^2-4A C)//A^2dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha,beta are the roots of a x^2+b x+c=0,(a!=0) and alpha+delta,beta+delta are the roots of A x^2+B x+C=0,(A!=0) for some constant delta then prove that (b^2-4a c)/(a^2)=(B^2-4A C)/(A^2)

If alpha,beta are the roots of a x^2+b x+c=0,(a!=0) and alpha+delta,beta+delta are the roots of A x^2+B x+C=0,(A!=0) for some constant delta then prove that (b^2-4a c)/(a^2)=(B^2-4A C)/(A^2)

If alpha,beta are the roots of a x^2+b x+c=0,(a!=0) and alpha+delta,beta+delta are the roots of A x^2+B x+C=0,(A!=0) for some constant delta then prove that (b^2-4a c)/(a^2)=(B^2-4A C)/(A^2)

If alpha,beta are the roots of ax^(2)+bx+c=0,(a!=0) and alpha+delta,beta+delta are the roots of Ax^(2)+Bx+C=0,(A!=0) for some constant delta then prove that (b^(2)-4ac)/(a^(2))=(B^(2)-4AC)/(A^(2))

If alpha , beta are the roots of ax^(2) +bx+c=0, ( a ne 0) and alpha + delta , beta + delta are the roots of Ax^(2) +Bx+C=0,(A ne 0) for some constant delta , then prove that (b^(2)-4ac)/(a^(2))=(B^(2)-4AC)/(A^(2)) .

If alpha,beta are the roots of the equation ax^(2)+bx+c=0 and alpha+delta,beta+delta are the roots of the equation Ax^(2)+Bx+C=0 then prove that (b^(2)-4ac)/(a^(2))=(B^(2)-4AC)/(A^(2)) for some constant value of delta

If alpha, beta are the roots of ax^(2)+2bx+c=0 and alpha +delta, beta + delta are those of Ax^(2)+2Bx+C=0 , then prove that (b^(2)-ac)/(B^(2)-AC)= ((a)/(A))^(2)

alpha,beta are the roots of ax^(2)+2bx+c=0 and alpha+delta,beta+delta are the roots of A x^(2)+2Bx+C=0 , then what is (b^(2)-ac)//(B^(2)-AC) equal to ?

If the roots of the equation ax^2+bx+c=0 are alpha , beta and the roots of the equation Ax^2+Bx+C=0 are (alpha+delta) and (beta+delta) then show that (b^2-4ac)/a^2=(B^2-4AC)/A^2