Home
Class 12
MATHS
Prove that (d)/(dx)(cos^(-1)x)=(1)/(sqrt...

Prove that `(d)/(dx)(cos^(-1)x)=(1)/(sqrt(1-x^(2))`, where `x in [-1,1].`

Promotional Banner

Similar Questions

Explore conceptually related problems

d/(dx){cos^(-1)x+Sin^(-1)sqrt(1-x^2)}

(d)/(dx)[cos^(-1)sqrt((1+x^(2))/(2))=

(d)/(dx)[cos^(-1)sqrt(((1+x))/(2))]

Prove the formulae(4) to (7). d/dx(cos^-1x)=(-1)/(sqrt1-x^2)

Prove that (d)/(dx)[(sin2x+1/(cos^2x)]

d/(dx)[cos(1-x^2)^2]=

d/(dx)[cos(1-x^2)^2]=

Differentiate (x cos^(-1) x)/(sqrt(1 - x^2)) w.r.t.x.