Home
Class 10
MATHS
हल कीजिये: 1/(2a+b+2x) = 1/(2a) + 1/b+1/...

हल कीजिये: `1/(2a+b+2x) = 1/(2a) + 1/b+1/(2x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve for: 1/(2a+b+2x)=1/(2a)+1/b+1/(2x)

Solve for: (1)/(2a+b+2x)=(1)/(2a)+(1)/(b)+(1)/(2x)

If A = (2x + 1)/(2x - 1) and B = (2x - 1)/(2x + 1) then A - B is equal to:

If a and b are roots of x^2 -p(x+1)-c =0 then (1+a) (1+b) and (a^2 + 2a+1)/(a^2 + 2a+c) + (b^2 +2b +1)/(b^2 + 2b +c) are,

If x + (1)/(x) = a and x - (1)/(x) = b , then a^(2) - b^(2) = "_______" .

a : If 1/((x-2)(x^(2)+1))=A/(x-2)+(Bx+C)/(x^(2)+1) " then "A=1/5, B=-1/5, C=-2/5 . R : 1/((x-a)(x^(2)+b))=1/(a^(2)+b)[1/(x-a)-(x+a)/(x^(2)+b)]

a : If 1/((x-2)(x^(2)+1))=A/(x-2)+(Bx+C)/(x^(2)+1) " then "A=1/5, B=-1/5, C=-2/5 . R : 1/((x-a)(x^(2)+b))=1/(a^(2)+b)[1/(x-a)-(x+a)/(x^(2)+b)]