Home
Class 12
MATHS
Show that(i) sin^(-1)(2xsqrt(1-x^2))=2si...

Show that(i) `sin^(-1)(2xsqrt(1-x^2))=2sin^(-1)x ,-1/(sqrt(2))lt=xlt=1/(sqrt(2))`(ii) `sin^(-1)(2xsqrt(1-x^2))=2cos^(-1)x ,1/(sqrt(2))lt=xlt=1`

Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    OSWAAL PUBLICATION|Exercise SHORT ANSWER TYPE QUESTIONS - II|43 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OSWAAL PUBLICATION|Exercise SHORT ANSWER TYPE QUESTIONS - II|43 Videos
  • INTEGRALS

    OSWAAL PUBLICATION|Exercise DEFINITE INTEGRALS (LONG TYPE ANSWER TYPE QUESTIONS - III)|40 Videos
  • LINEAR PROGRAMMING

    OSWAAL PUBLICATION|Exercise Long Answer Type Questions-lI|26 Videos

Similar Questions

Explore conceptually related problems

Show that sin^(-1)(2xsqrt(1-x^(2))) = 2sin^(-1)x ,

Prove the following: sin^(-1)(2xsqrt(1-x^(2)))=2sin^(-1)x,-1/(sqrt(2))lexle1/(sqrt(2))

Prove the following: sin^(-1)(2xsqrt(1-x^(2)))=2cos^(-1)x,-1/(sqrt(2))lexle1/(sqrt(2))

y = sin^(-1)(2xsqrt(1 - x^2)), -1/(sqrt2) lt x lt 1/(sqrt2)

int (sin^(-1) x)/(sqrt(1 - x^2)) dx .