Home
Class 12
MATHS
Prove that tan(cot^(-1)x)=cot(tan^(-1)x)...

Prove that `tan(cot^(-1)x)=cot(tan^(-1)x)`

Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    OSWAAL PUBLICATION|Exercise SHORT ANSWER TYPE QUESTIONS - II|43 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OSWAAL PUBLICATION|Exercise SHORT ANSWER TYPE QUESTIONS - II|43 Videos
  • INTEGRALS

    OSWAAL PUBLICATION|Exercise DEFINITE INTEGRALS (LONG TYPE ANSWER TYPE QUESTIONS - III)|40 Videos
  • LINEAR PROGRAMMING

    OSWAAL PUBLICATION|Exercise Long Answer Type Questions-lI|26 Videos

Similar Questions

Explore conceptually related problems

Prove that cot^(-1)(-x)=pi-cot^(-1)x,AAx inR .

Prove that cot^(-1) (-x) = pi - cot^(-1)x , forall " x " in R.

Prove that tan^(-1)x+tan^(-1)y=tan^(-1)((x+y)/(1-xy)) when xylt1

Prove that tan^(-1)x-tan^(-1)y=tan^(-1)((x-y)/(1+xy)),xygt-1

Prove that tan^(-1)x+cot^(-1)x=(pi)/(2), x in R .

cot(tan^(-1)a+cot^(-1)a)

The value of x for which sin (cot^(-1) (1+x))=cos (tan^(-1) x) is :

The equation tan^(-1) x-cot^(-1) x =tan^(-1) (1/sqrt3) has :

Prove the following: 2tan^(-1)x=tan^(-1)((2x)/(1-x^(2))),-1ltxlt1

Considering only the principal values, if tan ("cot"^(-1) x)=sin ("cot"^(-1) 1/2) , then x is :