Text Solution
Verified by Experts
The correct Answer is:
Topper's Solved these Questions
Similar Questions
Explore conceptually related problems
OSWAAL PUBLICATION-INVERSE TRIGONOMETRIC FUNCTIONS-SHORT ANSWER TYPE QUESTIONS - II
- Solve for x : tan^(-1)x+2cot^(-1)x=(2pi)/3
Text Solution
|
- Prove that s in^(-1)(8/(17))+sin^(-1)(3/5)=cos^(-1)((36)/(85))
Text Solution
|
- Solve for "x\ ":tan^(-1)(1-"x")/(1+"x")=1/2"tan"^(-1)"\ x";"x">0
Text Solution
|
- Prove that 2tan^(-1)(1/5)+sec^(-1)((5sqrt(2))/7)+2tan^(-1)(1/8)=pi/4...
Text Solution
|
- Prove that: tan^(-1)[(sqrt(1+x)-sqrt(1-x))/(sqrt(1+)x+sqrt(1-x))]=pi/4...
Text Solution
|
- If tan^(-1)((x-2)/(x-4))+tan^(-1)((x+2)/(x+4))=pi/4, find the value of...
Text Solution
|
- Solve for x : cos(tan^(-1)x)=sin(cot^(-1)3/4)
Text Solution
|
- Prove the following: cos^(-1)((12)/(13))+sin^(-1)(3/5)=sin^(-1)((56)/...
Text Solution
|
- Find the value of the following: tan1/2[sin^(-1)(2x)/(1+x^2)+cos^(-1)...
Text Solution
|
- Prove that : tan^(-1)(1/2)+tan^(-1)(1/5)+tan^(-1)(1/8)=pi/4dot
Text Solution
|
- Show that: tan(1/2sin^(-1)3/4)=(4\ sqrt(-7))/3
Text Solution
|
- Solve for x: tan^(-1)3x+tan^(-1)2x=pi/4
Text Solution
|
- tan^(-1)((3)/(4))+tan^(-1)((3)/(5))-tan^(-1)((8)/(19))=
Text Solution
|
- Prove that t a n^(-1)((cosx)/(1+sinx))=pi/4-x/2,\ x in (-pi/2,pi/2)
Text Solution
|
- cos(sin^-1 (3/5)+ cot^-1(3/2)) = 6/(5sqrt13)
Text Solution
|
- cos^(-1)((4)/(5))+cos^(-1)((12)/(13))=
Text Solution
|
- Solve for x : 2tan^(-1)(sinx)=tan^(-1)(2secx),\ x!=pi/2
Text Solution
|
- Prove that: "sin"[cot^(-1){"cos"(tan^(-1)x)}]=sqrt((x^21)/(x^2+2)) ...
Text Solution
|
- Prove that : 2tan^(-1)((3)/(4))-tan^(-1)((17)/(31))=(pi)/(4).
Text Solution
|
- Solve for x : tan^(-1)((2x)/(1-x^2))+cot^(-1)((1-x^2)/(2x))=pi/3,-1ltx...
Text Solution
|