Home
Class 12
MATHS
Evaluate : int0^(pi/4)log(1+tanx)dxdot...

Evaluate : `int_0^(pi/4)log(1+tanx)dxdot`

Text Solution

Verified by Experts

The correct Answer is:
`(pi)/(8)log2.`
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    OSWAAL PUBLICATION|Exercise DEFINITE INTEGRALS (VERY TYPE ANSWER TYPE QUESTIONS - II)|2 Videos
  • II PUC TOPPER'S ANSWERS MARCH (2017)

    OSWAAL PUBLICATION|Exercise PART - E Answer any one question :|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OSWAAL PUBLICATION|Exercise SHORT ANSWER TYPE QUESTIONS - II|43 Videos

Similar Questions

Explore conceptually related problems

Evaulate int_(0)^(pi//4)log(1+tanx)dx .

Prove that int_(0)^(a)(x)dx = int_(0)^(a) f(a-x)dx and hence evaluate int_(0)^(pi/4)log (1 + tan x)dx .

Prove that int_(a)^(b) f(x)dx= int_(a)^(b) f (a+b-x)dx" hence evaluate " int_(0)^(pi/4) log(1+tan x)dx .

int_0^(pi//2) log(tan x)dx =

int_0^(pi/4) tan^(2)xdx

int_0^(pi/3) tanx dx =

int_0^(pi//2) log(tan x) dx is :

Evaluate int _(0)^(pi/4) cos x dx

int_0^(pi/2) log|tanx+cotx|dx =

If I = int_0^(pi/4) log (1+ tan x) dx , then I =