Home
Class 12
MATHS
overset(pi)underset(0)int(x)/(1+sinx)dx....

`overset(pi)underset(0)int(x)/(1+sinx)dx`.

Text Solution

Verified by Experts

The correct Answer is:
`pi`
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    OSWAAL PUBLICATION|Exercise DEFINITE INTEGRALS (VERY TYPE ANSWER TYPE QUESTIONS - II)|2 Videos
  • II PUC TOPPER'S ANSWERS MARCH (2017)

    OSWAAL PUBLICATION|Exercise PART - E Answer any one question :|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OSWAAL PUBLICATION|Exercise SHORT ANSWER TYPE QUESTIONS - II|43 Videos

Similar Questions

Explore conceptually related problems

overset(n//2)underset(0)int(cosx-sinx)/(1+cosxsinx)dx

The value of underset(-1)overset(2)int(|x|)/(x) dx is

Evaluate underset(0)overset(pi/2)int (sin x)/(1+cos^(2)x)dx

underset(0)overset(pi//4)(int)log(1+tanx)dx=.....

underset(-pi//4)overset(pi//4)int (dx)/(1+cos 2x) is equal to

underset(0)overset(pi)intxf(sin x)dx=A underset(0)overset(pi//2)int f(sin x) dx then A is

Prove that int_(0)^(a) f(x)dx=int_(0)^(a) f(a-x)dx and hence evaluate underset(0)overset(pi/2)int (cos^(5)x)/(sin^(5)+x+cos^(5)x)dx .

Evaluate : underset(2)overset(3)int (xdx)/(x^(2)+1)

Prove that underset(-a)overset(a)int f(x)dx={{:(,2underset(0)overset(a)int f(x)dx,"if f(x) is an even function"),(,0,"if f(x) is an odd function"):} and hence evaluate underset(-pi//2)overset(pi//2)int (x^(3)+x cos x)dx.

Evaluate underset(0)overset(2)int (x^(2)+1)dx as a limit of a sum.