Home
Class 12
MATHS
निचे दिए प्रत्येक अवकलज समीकरण की कोटि ए...

निचे दिए प्रत्येक अवकलज समीकरण की कोटि एवं घात (यदि परिभाषित हो) ज्ञात कीजिए-
`((d^(3)y)/(dx^(3)))^(2)+((d^(2)y)/(dx^(2)))^(3)+((dy)/(dx))^(4)+y^(5)=0`

Text Solution

Verified by Experts

The correct Answer is:
order is 3,Degree is 2
Promotional Banner

Topper's Solved these Questions

  • SOLVED PAPER MARCH - 2018

    OSWAAL PUBLICATION|Exercise PART - C|14 Videos
  • SOLVED PAPER MARCH - 2018

    OSWAAL PUBLICATION|Exercise PART - D|9 Videos
  • SOLVED PAPER MARCH - 2018

    OSWAAL PUBLICATION|Exercise PART - E|3 Videos
  • RELATIONS & FUNCTIONS

    OSWAAL PUBLICATION|Exercise BINARY OPERATIONS (Long Answer Type Questions )|1 Videos
  • SOLVED PAPER ( Topper Answers March - 2015 )

    OSWAAL PUBLICATION|Exercise PART - E|4 Videos

Similar Questions

Explore conceptually related problems

If y=a^(x), (d^(2)y)/(dx^(2))=

Find the order and degree of the D.E ((d^(3)y)/(dx^(3)))^(2)+((d^(2)y)/(dx^(2)))^(3)+(dy)/(dx)+y=0

If e^(y)(x+1)=1 . Show that (d^(2)y)/(dx^(2))=((dy)/(dx))^(2)

Find the order and degree of the differential equation: ((d^(3)y)/dx^(3))^(2)+((d^(2)y)/dx^(2))^(3)+((dy)/(dx))^(4)+y^(5)=0

If y=(sin^(-1)x) . Show that (1-x^(2)) (d^(2)y)/(dx^(2))-x((dy)/(dx))=0

If x+y= tan^(-1)y and (d^(2)y)/(dx^(2))=f(y)(dy)/(dx) then f(y)=

If e^(y)(x + 1) = 1 show that (d^2 y)/(dx^2) = ((dy)/(dx))^(2) .