Home
Class 12
MATHS
underset( x rarr (pi)/(4))("Lim")(1-tanx...

`underset( x rarr (pi)/(4))("Lim")(1-tanx)/( 1- sqrt(2) sin x) `

Promotional Banner

Similar Questions

Explore conceptually related problems

Putting z=x-(pi)/(4)" show that "underset(xrarr(pi)/(4))"lim"(1-tanx)/(1-sqrt(2)sinx)=2.

underset( x rarr ( pi )/( 4))("Lim")(sqrt( 1- sqrt( sin x)))/(pi - 4x)

Find lim {x rarr (pi) / (4)} (1-tan x) / (1-sqrt (2) sin x)

Putting z=x-(pi)/(4), show that lim_(x rarr(pi)/(4))(1-tan x)/(1-sqrt(2)sin x)=2

The value of underset(xrarr(3pi)/(4))(lim)(1+root3(tanx))/(1-2cos^(2)x) is

Evaluate the following limit: (lim)_(x rarr(pi)/(4))(1-tan x)/(1-sqrt(2)s in x)

Evaluate : underset ( theta rarr pi //4) ( "lim") ((1- tan theta))/( (1- sqrt(2) sin theta ))

Solve underset( pi rarr ( pi )/( 2)) ("lim") sqrt(( tan x - sin { tan ^(-1) ( tan x )})/( tan x + cos ^(2)( tan x )))

Evaluate underset(x rarr (pi)/(2))(lim) (log sin x)/((pi - 2x)^(2))

Evaluate : underset(x rarr (pi)/(4))lim (1-tan x)/(x-(pi)/(4))