Home
Class 12
MATHS
The value of integral sum (k=1)^(n) int...

The value of integral ` sum _(k=1)^(n) int _(0)^(1) f(k - 1+x) dx ` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) is continuous for all real values of x, then sum_(r=1)^(n)int_(0)^(1)f(r-1+x)dx is equal to (a)int_(0)^(n)f(x)dx(b)int_(0)^(1)f(x)dx(c)int_(0)^(1)f(x)dx(d)(n-1)int_(0)^(1)f(x)dx

If f(x) is continuous for all real values of x then sum_(r=1)^(n)int_(0)^(1)f(r-1+x)dx is equal to a) int_(0)^(n)f(x)dx b) int_(0)^(1)f(x)dx c) nint_(0)^(1)f(x)dx d) (n-1)int_(0)^(1)f(x)dx

If int_(0)^(10)f(x)dx=5, find the value of sum_(k=1)^(10)int_(0)^(1)f(k-1+x)dx

The value of the integral int_(0)^(1) x(1-x)^(n)dx is -

The value of the integral int_(0)^(1) x(1-x)^(n)dx is -

The value of the integral int_(0)^(1) x(1-x)^(n)dx , is

If f(k - x) + f(x) = sin x , then the value of integral I = int_(0)^(k) f(x)dx is equal to