Home
Class 12
MATHS
If y=2x+3x^2 + 4x^3 +…, then x I terms o...

If `y=2x+3x^2 + 4x^3 +…,` then x I terms of y is

Promotional Banner

Similar Questions

Explore conceptually related problems

If |x| lt 1, y = x - x^(2) + x^(3) - x^(4) + ….. , the value of x in terms of y is

If 3x + y i= x + 2y , then 2x - y =

If 2x-1/(3x)=y then 9x^2+1/(4x^2) in terms of y is

For 2x + 3y = 4 , y can be written in terms of x as _______ .

If 7x - 15y = 4x + y , find the value of x: y . Hence, use componendo and dividendo to find the values of : (i) (9x + 5y)/(9x - 5y) (iI) (3x^(2) + 2y^(2))/(3x^(2) - 2y^(2))

If [2x+y,4x,5x-7 4x]=[7 7y-13 y x+6] , then the value of x+y is x=3 , y=1 (b) x=2 , y=3 (c) x=2 , y=4 (d) x=3 , y=3

If x=2 and y=3, then find the values of (i) (2x+3y)/(4x-3y) " "(ii) (2x^(2)-7x+2y)/(2y^(2)-7y+2x)

A triangle has vertices A_(i) (x_(i),y_(i)) for i= 1,2,3,. If the orthocenter of triangle is (0,0) then prove that |{:(x_(2)-x_(3),,y_(2)-y_(3),,y_(1)(y_(2)-y_(3))+x_(1)(x_(2)-x_(3))),(x_(3)-x_(1) ,,y_(3)-y_(1),,y_(2)(y_(3)-y_(1))+x_(2)(x_(3)-x_(1))),( x_(1)-x_(2),,y_(1)-y_(2),,y_(3)(y_(1)-y_(2))+x_(3)(x_(1)-x_(2))):}|=0

A triangle has vertices A_(i) (x_(i),y_(i)) for i= 1,2,3,. If the orthocenter of triangle is (0,0) then prove that |{:(x_(2)-x_(3),,y_(2)-y_(3),,y_(1)(y_(2)-y_(3))+x_(1)(x_(2)-x_(3))),(x_(3)-x_(1) ,,y_(3)-y_(1),,y_(2)(y_(3)-y_(1))+x_(2)(x_(3)-x_(1))),( x_(1)-x_(2),,y_(1)-y_(2),,y_(3)(y_(1)-y_(2))+x_(3)(x_(1)-x_(2))):}|=0