Home
Class 7
MATHS
समान पदों को संयोजित (मिला) करके सरल कीज...

समान पदों को संयोजित (मिला) करके सरल कीजिए
(i) `21b-32+7b-20b`
(ii) `-z^(2)+13z^(2)-5z+7z^(3)-15z`
(iii) `p-(p-q)-q-(q-p)`
(iv) `3a-2b-ab-(a-b+ab)+3ab+b-a`
(v) `5x^(2)-5x^(2)+3yx^(2)-3y^(2)+x^(2)+y^(2)+8xy^(2)-3y^(2)`
(vi) `(3y^(2)+5y-4)-(8y-y^(2)-4)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Subtract: (i) -8xy from 7xy (ii) x^(2) from -3x^(2) (iii) (x - y) from (4y - 5x) (iv) (a^(2) + b^(2) - 2ab) from (a^(2) + b^(2) + 2ab) (v) (x^(2) - y^(2)) from (2x^(2) - 3y^(2) + 6xy) (vi) (x -y + 3z) from (2z - x - 3y)

If x=2a^(2)+3b^(2)-5ab, y=b^(2)-3a^(2)+7ab and z=6a^(2)-b^(2)+ab , find: x+y-z

Add: (i) 3a - 2b + 5c, 2a + 5b - 7c, -a - b + c (ii) 8a - 6ab + 5b, -6a - ab - 8b, -4a + 2ab + 3b (iii) 2x^(3) - 3x^(2) + 7x - 8, -5x^(3) + 2x^(2) - 4x + 1, 3 - 6x + 5x^(2) - x^(3) (iv) 2x^(2) - 8xy + 7y^(2) - 8xy^(2), 2xy^(2) + 6xy - y^(2) + 3x^(2), 4y^(2) - xy - x^(2) + xy^(2) (v) x^(3) + y^(3) - z^(3) + 3xyz, - x^(3) + y^(3) + z^(3) - 6xyz, - x^(3) - y^(3) - z^(3) - 8xyz (vi) 2 + x - x^(2) + 6x^(3). -6 - 2x + 4x^(2) - 3x^(3). 2 + x^(2). 3 - x^(3) + 4x - 2x^(2)

If x = 1, y = 2 and z = 5, find the value of (i) 3x - 2y + 4z (ii) x^(2) + y^(2) + z^(2) (iii) 2x^(2) - 3y^(2) + z^(3) (iv) xy + yz - zx (v) 2x^(2) y - 5yz + xy^(2) (vi) x^(3) - y^(3) - z^(3)

Subtract: (i) 5a + 7b - 2c from 3a - 7b + 4c (ii) a - 2b - 3c from -2a + 5b - 4c (iii) 5x^(2) - 3xy + y^(2) from 7x^(2) - 2xy - 4y^(2) (iv) 6x^(3) - 7x^(2) + 5x - 3 from 4 - 5x + 6x^(2) - 8x^(3) (v) x^(3) + 2x^(2) y + 6xy^(2) - y^(3) from y^(3) - 3xy^(2) - 4x^(2) (vi) -11 x^(2) y^(2) + 7xy - 6 from 9x^(2) y^(2) - 6xy + 9 (vii) -2a + b + 6d from 5a - 2b - 3c

If x=2a^(2)+3b^(2)-5ab, y=b^(2)-3a^(2)+7ab and z=6a^(2)-b^(2)+ab , find: x-y+z

Write the coefficient of (i) x in 13x (ii) y in - 5y (iii) a in 6ab (iv) z in - 7xz (v) p in - 2 pqr (vi) y^(2) in 8xy^(2)z (vii) x^(3) in x^(3) (viii) x^(2) in -x^(2)

Find the product.(i) (5-2x)(3+x) (ii) (x+7y)(7x-y)( iii) (a^(2)+b)(a+b^(2))( iv) (p^(2)-q^(2))(2p+q)

Factorise the expressions and divide them as directed. (i) (y^2+7y+10) -: (y+5) (ii) (m^2-14m-32) -: (m+2) (iii) (5p^2-25p+20) -: (p-1) (iv) (4yz(z^2+6z-16) -: 2y (z+8) (v) 5pq(p^2-q^2) -: 2p(p+q) (vi) 12xy (9x62-16y^2) -: 4xy (3x+4y) (vii) 39y^3(50y^2-98) -: 26y^2(5y+7)