Home
Class 12
MATHS
The relation tan^(-1)((1+x)/(1-x))=(pi)/...

The relation `tan^(-1)((1+x)/(1-x))=(pi)/(4)+tan^(-1)x` holds true for all

Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(-1)((1+x)/(1-x))=(pi)/(4)+tan^(-1)x,x<1

tan^(-1)2x+tan^(-1)3x=(pi)/(4)

Prove that : tan^-1((1-x)/(1+x))= pi/4 - tan^-1 x

Solve the following equations tan^(-1)((1+x)/(1-x))=(pi)/(4)+tan^(-1)x

tan^(-1)(x-1)+tan^(-1)(x+1)=(pi)/(4)

Prove that tan^-1(1+x)/(1-x) = pi/4 + tan^-1x, x < 1

tan^(-1)(x/2)+tan^(-1)(x/3)=(pi)/(4)

Solve tan^(-1)x -"tan"^(-1)(1)/(4)=(pi)/(4) .

If tan^(-1)x=(pi)/(4)-tan^(-1)((1)/(3))then x is

If Tan^(-1)(1+x)+Tan^(-1)(1-x)=pi//4 then x =